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Abstract In this work a scheme for constructing systematic
sequences of relativistic SCF basis sets at a reasonable com-
putational cost is presented and applied to atoms of the s- and
p-block up to Xe. This scheme, which couples simplex opti-
mization and the use of geometric series given by four-term
polynomial expressions for the logarithm of the exponents,
allows for the construction of basis sets that exhibit very regu-
lar patterns of convergence to the numerical reference values
of atomic total energies, spinor energies and radial expec-
tation values. This regularity, together with the broad range
of basis set sizes presented, enables these sets to be used as
building blocks for basis sets applicable in both routine and
benchmark relativistic calculations on atomic and molecular
systems.

Keywords Geometric basis sets · Relativistic basis sets ·
s-Block elements · p-Block elements · Systematic sequences

1 Introduction

The field of relativistic quantum chemistry has been rap-
idly evolving over the last three decades, stimulated by ad-
vances in computer technology and by the growing interest in
heavy element chemistry. In this period there have been many
advances in the development of computer codes and theoret-
ical methods [1–3], although the development of basis sets
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with sizes compatible with use in molecular calculations has
not seen corresponding developments until recently, as in the
work of Dyall [4–6] (in preparation, available from the Dirac
web site, http://dirac.chem.sdu.dk), Faegri [7,8]
or Tatewaki and coworkers [9–11].

The basis sets available so far, and which have sizes com-
patible with molecular applications, are of at most quadruple-
zeta quality. It is reasonable to assume, from what has been
established through cumulative evidence in non-relativistic
calculations [12,13], that relativistic basis sets of double and
triple zeta quality should be reasonably accurate for most
routine calculations, but may not be enough for benchmark
calculations of energies and properties that should approach
basis set completeness.

It is therefore important to develop basis sets that show
systematic improvements in the calculated properties of inter-
est as they are enlarged, not only to allow for a better under-
standing of the behavior of relativistic basis sets as
they approach completeness (as that might be useful in devis-
ing extrapolation schemes for energies and properties), but
also to have a better idea of the influence of basis set incom-
pleteness errors in calculations involving heavy elements.

Thus, in this work we introduce a procedure suitable for
the development of systematic sequences of basis sets, and
apply it in the construction of sequences of relativistic SCF
basis sets for s- and p-block elements up to Xe. This pro-
cedure consists of coupling simplex optimization with geo-
metric series which closely resemble the distribution of fully
optimized exponents. The quality of such sequences is evalu-
ated in atomic calculations by inspecting the behavior of the
total energies, spinor energies and radial expectation values.

2 Methods

A proven scheme to enlarge basis sets in a systematic way
relies on the use of geometric series as generators for the
exponents. The systematic procedure pioneered by Rueden-
berg and co-workers [14,15] used even-tempered basis sets.
Due to the peculiarities of relativistic basis sets, which usually
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require more functions than their non-relativistic counter-
parts (particularly tight functions) to achieve the same degree
of accuracy in atomic energies or other properties, more flex-
ibility than that provided by the use of even-tempered sets is
needed in a generator formula, in order to keep the basis set’s
sizes as small as possible.

We have thus opted to use a generator formula which,
while more flexible than the even-tempered expression, still
has a relatively small set of parameters to be optimized. This
expression is given by the polynomial expression [16] for
log ζi,l (where ζi,l is the i th exponent of a set with angular
momentum l),

log ζi,l = p0,l + p1,l(i − 1) + p2,l(i − 1)2

+p3,l(i − 1)4, (1)

with i = 1, . . . , Nl and Nl being the number of exponents of
a given orbital angular momentum. This formula is closely
related to the one proposed by Klobukowski [17,18]

log ζi,l = p0,l + p1,l(i − 1) + p2,l(i − 1)2

+p3,l(i − 1)3 + p4,l(i − 1)4, (2)

but has the advantage of having one less parameter per angu-
lar symmetry to be optimized while yielding essentially the
same results as the latter.

The parameters {pk,l} of Eq. (1) are obtained by mini-
mizing the total atomic energy (for open shell systems the
average of configurations energy is used) with the simplex
method of Nelder and Mead [19]. In order to enable their
use in the molecular programs available to date, we opted to
restrict the exponents to be the same for all possible j values
for a given orbital quantum number, that is, these sets are
l optimized. A gaussian distribution [20] was used to model
a finite nucleus in all calculations. The simplex implemen-
tation used in our optimizer is a slighlty modified version of
the routine given by Press et al. [21] rewritten in the Perl pro-
gramming language [22]. As the optimizer is not capable of
calculating atomic energies the actual ab initio calculations
are executed by the atomic code of Matsuoka and Watanabe
[23].

During the optimization, a restart procedure which con-
sists of running the optimizer for a relatively small number
of steps (usually 500), stopping it and restarting from a sli-
ghlty different position in parameter space was used. This was
done to avoid ending the optimization after reaching local
minima with relatively high energies when compared to the
global minimum, even though it is not possible to guarantee
that the global minimum was reached, due to the flatness of
the potential energy surface. It was found that for the first
and second row elements two to three restarts are enough to
obtain convergence to three to four significant figures for the
parameters and better than � 10−6 a.u. for the energy.

We have chosen to construct basis sets of the type “ns(n−
5)p” for the first and second row elements and “ns(n −
5)p(n − 10)d” for the third and fourth row elements, with
“n” being the number of primitives used to define the total
size of the basis set. As “n” also coincides with the number of
s primitives, hereafter we shall employ the number of these

functions to implicitly indicate the size of a given basis set
(which can be calculated directly from the formulas above).
For the elements B–Ca we obtained basis sets in which “ns”
ranges from 10 to 28. For the elements Ga–Sr, “ns” ranges
from 16 to 30, while for In–Xe it ranges from 18 to 34.

It should be noted that the fixing of differences in the num-
ber of s, p and d primitives is of a purely practical nature, as
there would be a very large number of possible size combi-
nations if we were to vary these parameters independently.
The sizes chosen, however, were selected on the basis of the
analysis of the balance of errors among the different angular
symmetries for the first and second row atoms perfomed by
Klobukowski [18], in which basis sets of the type “ns(n −
5)p” or “ns(n − 6)p” usually were well balanced for small
to moderately sized sets, while still providing good energies
with respect to the fully optimized sets. While we hope that
this balance shall be maintained for the elements considered,
we acknowledge that this may not be the case for the heavier
elements due to the differences in behavior between inner and
valence shells, but investigations along this line are beyond
the scope of this work.

3 Results

In order to compare different atoms on an equal footing, the
results for total and orbital energies as well as atomic expec-
tation values for the rn(n = −2, . . . , 4) operators are pre-
sented here as the error in the basis set representation, that is,
as differences between the values calculated using the differ-
ent basis sets and the reference numerical relativistic HF–
SCF values calculated by Dyall and Visscher [24]. Thus, the
absolute and relative errors for property P are defined as

�P = (PB − PNHF) (3)

and

�r P = PB − PNHF

PNHF
, (4)

respectively, where PB is the value of the calculated property
in the basis set calculation and PNHF the reference numerical
value.

3.1 Total energies

The error in the total energy for a calculation with a given
basis set, denoted by �Em (m being the atom of interest),
is a commonly used criterion in the assessment of basis set
quality, due to the its close connection with the variational
nature of most basis set optimization procedures. The behav-
ior for �Em as the basis sets are enlarged is summarized in
Figs. 1 and 2 for the p-block elements and in Fig. 3 for the
s-block elements, respectively. From these figures one sees a
clear and well-behaved improvement for the atomic energies
as the basis sets’ sizes are increases, which monotonically
approach the reference numerical Dirac–Fock values. The
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Fig. 1 Deviation of the total energy from the numerical reference values (�Em ) with increased basis set size for first and second row p-block
elements
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Fig. 3 Deviation of the total energy from the numerical reference values (�Em ) with increased basis set size for s-block elements

variations in �Em roughly follow an exponential decrease
which means that for smaller basis sets there will be large
variations in �E .

As a consequence of this exponential behavior, there are
regions of relatively small basis sets where large variations on
�E occur upon enlargement, and regions of moderately sized
and large sets for which a slow but steady improvement in the
energies is observerd. For the elements considered here, the
regions of higher variation of �E upon basis set enlargement
are seen for sets smaller than about (a) “ns” = 12 for the first
row, (b) “ns” = 16 for the second row, (c) “ns” = 21 for the
third row and (d) “ns” = 25 for the fourth row elements. This
behavior reflects the difficulty of a basis set to describe a sys-
tem as the number of electrons is increased and, as a result,
there is a need for describing a much broader region in space
than those required for the atoms in the previous row of a
given group. In addition, the increasing energy of the deep
core levels makes it harder to obtain the same absolute energy
convergence as can be achieved for lighter elements.

For larger basis sets, the rate of change in �Em with
respect to “ns” takes up a constant rate of about two (�
(�Em)/�(ns) � 2), with slightly different values for the
s and p blocks. This regularity is important as it not only
indicates consistency within and among blocks but also hints
at a possibly adequate behavior if extrapolations are to be
attempted, while being a helpful tool during the optimiza-
tion. The differences in the ranges where �E varies strongly
for each row, on the other hand, suggests the need to use
basis sets with similar accuracies in �E if these are used in

molecular calculations, to avoid spurious effects caused by
varying degrees of convergence with respect to the SCF limit
within the molecule. Another interesting pattern that emerges
is that the differences in �E’s within a given row decreases
as one moves down the periodic table. This could be related
to the degree of saturation of the basis sets or to the large
number of particles to be described, so that the perturbation
to the density upon addition of a proton and electron is much
weaker than for the same change in lighter atoms.

The basis set sequences appear to be free from the
so-called “variational prolapse” [5] at the first inspection, as
no energies fall below the numerical reference values. One
may, however, verify from the monotonic behavior of the
�E’s obtained here that the conditions proposed by Tate-
waki for devising “prolapse-free” basis sets [11,25,26],

δE(n) = E(n − 1) − E(n) > 0, lim
n→large

δE(n) → 0 (5)

�E(n)= E(n) − E(NHF)>0, lim
n→large

�E(n) → 0 (6)

n being the size of the expansion, are met even though these
conditions were not enforced during the optimization.

3.2 Spinor energies

Although total atomic energies an important measure of basis
set quality, they are essentially a global indicator and, as such,
miss entirely any local information regarding the wavefunc-
tion. In order to deal with this shortcoming we have also
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Fig. 4 Absolute �εmn values for the 1s1/2 and 4s1/2 spinors for third row atoms (top); and for the 1s1/2, 2p1/2 and 2p3/2 spinors for the halogen
atoms (bottom)

analyzed the behavior of spinor energies εmn calculated with
different basis sets, as well as the difference among these
and the reference values obtained from numerical calcula-
tions, expressed by �εmn (m being the atom and n the spinor
of interest). The analysis of the spinor energies for the basis
sets obtained in this work has revealed similar behavior to
those found for the total energies, that is, large variations for
the smaller basis sets, followed by a slow but steady conver-
gence to the reference values as the basis sets are enlarged. To
illustrate such behavior we consider the variations within a
row (the third row) and within a group (the halogens), shown
in Fig. 4.

Considering first the behavior for the 1s1/2 and 4s1/2 spi-
nors for the third row (as 2s1/2 and 3s1/2 are intermediate
cases), it is seen that the �εmn for different atoms are close
to each other, as is the case for �Em . Interestingly, the abso-
lute errors for the core and valence spinors are of the same
magnitude. However, as the magnitude of εk,1s1/2 is much
larger than that of εk,4s1/2 , the relative errors will be much
smaller for the former than for the latter. The difference in
relative errors is expected, due to the larger weight of the
inner orbitals in the calculation of the total energy and, as

a result, the optimization procedure ends up providing more
accurate inner spinors.

For the halogens, there is a great similarity between the
behavior of the absolute errors of ε for the 1s1/2, 2p1/2 and
2p3/2 spinors, in spite of the fact that the differences among
2p1/2 and 2p3/2 increase with atomic number. Relative errors
show a similar behavior to that observed for the 1s1/2 and
4s1/2 spinors for the third row, since �rεmn increases as we
move towards the valence region . The errors also increase
for a given basis set size as we go down the periodic table.
But if we compare basis sets that exhibit similar values of
�Em (such as 10s5p for F, 13s8p for Cl and 17s12p7d for
Br), the behavior of �εmn follows that of �Em . This supports
the previous observation that it might be desirable to group
basis sets by similarities in �Em in order to work with sets
of approximately the same quality for elements of different
rows.

A general feature of the spinor energies for these basis
sets is the absence of negative errors, which would occur
if the orbital energies were, in absolute value, larger than
the reference values. Negative values of �εmn could be a
more sensitive indication for inadequacies in the basis set
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Fig. 5 Values of |�〈r〉| for the s1/2 spinors of third row atoms with increased basis set’s size

representation for some part of the wavefunction, as they are
sometimes seen in the cases of “variational prolapse”.

3.3 Expectation values of rn(n = −2, . . . , 4)

Complementary to the analysis of energies, the behavior from
the expectation values of the rn operators is helpful in esti-
mating the local characteristics of the basis sets, but, in this
case, with respect to calculated properties. This is because
the one-electron property operators will be proportional to
the powers of rn . Thus, here we present the comparison of 〈r〉
and 〈r−1〉 with their reference numerical values, expressed as
�〈r〉 and �〈r−1〉, respectively, for the ns1/2(n = 1, . . . , 4)
spinors of the third row elements as shown in Figs. 5 and 6,
respectively.

For �〈r〉 some important differences from the corre-
sponding results for �εmn are seen, such as the larger oscil-
lations of �〈r〉 as the basis sets are enlarged up to “ns” = 21.
In this case, the curves approach the reference values from
above for the valence spinor and from below for the others,
with �〈r〉mn increasing as one moves away from the core.
It can be seen that the absolute errors increase with atomic

number and that, as the basis sets are enlarged, an approx-
imately exponential but slow convergence to the reference
values is observed.

These observations for the larger basis sets are also gen-
erally valid for �〈r−1〉mn , while for the smaller basis sets
there are some distinctive differences. The first is that the
variations within the row is even larger than that seen for
�〈r〉mn . The behavior of the errors also changes, with con-
vergence to the reference values being less smooth and errors
becoming larger than for �〈r〉 as one moves from valence to
core spinors. These differences in behavior can be understood
if one takes into account the sensitivity of these operators for
the different atomic regions: while 〈r〉mn is more sensitive
or away from the nucleus, 〈r−1〉mn is closer to it. It is not
possible at this time to compare the results from other pow-
ers of r due to the lack of reference numerical values, but
from the behavior of εmn these should follow closely what
was observed of the operators discussed so far.

It is difficult to establish the reason for the larger varia-
tions for properties with increased basis set size. While they
may arise from numerical noise, it does not appear likely that
linear dependency on the basis sets is a significant factor to it.
If one compares the values for the lowest eigenvalues of the
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Fig. 6 Values of |�〈r−1〉| for the s1/2 spinors of third row atoms with increased basis set’s size

overlap matrix for the Br atom, shown in Fig. 7, and the trends
for the �〈r〉mn or �〈r−1〉mn , it is possible to see that varia-
tions on the latter appear well before the lowest eigenvalues of
S are smaller than 10−4. It could be said, however, that there
is some effect of the quasi-linear dependency on the largest
sets, as the variations become slightly more pronounced for
basis sets with “ns” > 24, for which the eigenvalues of S
approach 10−5 for the s set.

3.4 Parameters

The systematic behavior seen for the errors in total ener-
gies, spinor energies and expectation values is also seen to
a good extent in the sets of optimized parameters, provided
as supplementary material. It is seen that, as the basis sets
approach completeness, the parameters take on values that
increasingly resemble an even-tempered expression, due to
the decrease of the absolute values of the sets of parameters
p2,l and p3,l which represent the deviation from the even-
tempered expression.

It is possible to note a similarity in the behavior of parame-
ters for primitives s, p and d , particularly regarding the inter-
val in which these vary. For p1,l , the parameters take on values

within the range [1.5, 0.6], while for the p2,l this variation is
in the range [−0.07,−0.01]. For the p3,l parameters there is
a well-defined exponential-like decrease for all angular sym-
metries, with variations over increasingly smaller values seen
when going from s to p as well as from p to d primitives.
For p0,l , on the other hand, the interval in which s (and p)
parameters vary differs considerably from the d exponents;
these being [−3,−1] and [−2, 0.25], respectively, indicate a
less diffuse behavior for the outer d exponents with respect
to the s (and p) meshes.

A higher degree of oscillation can also be seen for the
parameter associated with the d exponents than for those
associated either with s or p exponents. This might arise
from the lesser influence the former have on the total atomic
energies and, therefore, their influence in the optimization
procedure is diminished with respect to the latter. The oscil-
lations are also seen to increase somewhat with increased
atomic number, particularly for p0,l .

3.5 Compararison with other relativistic basis sets

For the third row onwards there are some basis sets developed
that have been explicitly optimized to take relativistic effects
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Table 1 Energy differences for the Dyall [4] DZ sets, as well as for
similarly sized basis sets from this work; The �E values are expressed
in mhartrees

Atom Dyall [4] DZ �EDZ This work (1) �E1

Ga 15s11p6d 39.593 16s11p6d 44.810

Ge 15s11p6d 41.039 16s11p6d 46.190

As 15s11p6d 43.318 16s11p6d 48.225

Se 15s11p6d 46.256 16s11p6d 50.754

Br 15s11p6d 49.848 16s11p6d 53.825

Kr 15s11p6d 53.933 16s11p6d 57.341

In 19s15p9d 28.654 19s14p9d 74.782

Sn 19s15p9d 28.916 19s14p9d 62.548

Sb 19s15p9d 29.678 19s14p9d 67.519

Te 19s15p9d 30.734 19s14p9d 69.943

I 19s15p9d 32.245 19s14p9d 68.344

Xe 19s15p9d 33.952 19s14p9d 74.660

into account, so a comparison of the sets developed here to
those is also helpful in evaluating the results obtained so far.

In Tables 1 and 2 are shown, respectively, a compari-
son of some specific basis sets developed here and those of
double [4] and triple-zeta [5] quality developed by Dyall via
a complete optimization of exponents by gradient methods.
While it is difficult to compare the sets as the sizes vary
greatly, it is clearly seen that Dyall’s basis sets generally
exhibit better results than those obtained by geometric series

Table 2 Energy differences for the Dyall [5] TZ sets, as well as for
similarly sized basis sets from this work; the �E values are expressed
in mhartrees

Atom Dyall [4] TZ �ET Z This work (2) �E2

Ga 23s16p9d 0.650 22s17p12d 0.397

Ge 23s16p9d 0.666 22s17p12d 0.413

As 23s16p9d 0.700 22s17p12d 0.435

Se 23s16p9d 0.748 22s17p12d 0.458

Br 23s16p9d 0.807 22s17p12d 0.490

Kr 23s16p9d 0.873 22s17p12d 0.523

In 28s21p14d 0.294 27s22p17d 0.265

Sn 28s21p14d 0.306 27s22p17d 0.235

Sb 28s21p14d 0.322 27s22p17d 0.248

Te 28s21p14d 0.342 27s22p17d 0.238

I 28s21p14d 0.365 27s22p17d 0.242

Xe 28s21p14d 0.391 27s22p17d 0.251

as expected, due to the greater variational flexibility war-
ranted by the unconstrained optimization. Another difference
between Dyall’s results and those from this work is that in
the latter the differences in �Em across the rows are smaller.
In spite of this, it is interesting to note that the difference
in absolute terms is usually not very large, while in relative
terms it reaches at most a factor of 2 for the comparison with
fourth row DZ sets. As these sets are in a region where the
changes in energy with respect to basis set size are very pro-
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Table 3 Comparison of energy differences (�E) for the Fægri [7] DZ sets and of similarly sized basis sets from this work; the �E are in mhartrees

Basis set (Ref. [7]) �Em (Ref. [7]) Basis set (this work) �Em (this work)

K 19s14p 0.3 19s14p 0.5

Ca 19s14p 0.3 19s14p 0.6

Ga 19s16p9d 2.8 19s14p9d 3.6

Ge 19s16p9d 2.8 19s14p9d 3.7

As 19s16p9d 2.8 19s14p9d 4.0

Se 19s16p9d 2.8 19s14p9d 4.2

Br 19s16p9d 2.8 19s14p9d 4.5

Kr 19s16p9d 3.0 19s14p9d 4.9

Rb 20s16p9d 3.8 20s15p10d 6.5

Sr 20s16p9d 3.7 20s15p10d 7.9

In 20s18p11d 9.5 21s16p11d 14.8

Sn 20s18p11d 9.6 21s16p11d 15.0

Sb 20s18p11d 9.8 21s16p11d 15.0

Te 20s18p11d 9.9 21s11p11d 15.7

I 20s18p11d 10.0 21s16p11d 15.7

Xe 20s18p11d 10.2 21s16p11d 16.9

nounced, a small difference in size can yield significantly
different energies.

A second comparison with fully optimized basis sets is
shown in Table 3, where the double-zeta “family-type” basis
sets of Fægri [7] are compared to similarly sized basis sets
(a peculiarity of the “family-type” scheme is that s, d, g, . . .
and p, f, h, . . . exponents are shared, so it is less flexible in
the variational sense than, for example, Dyall’s basis sets).
For K and Ca, which do not possess occupied d orbital, the
comparison of results is straightforward as we may compare
the sets of same size. In this case, we see slightly better results
for the Fægri sets, with differences of about 0.2–0.3 mhartree
among the sets, corresponding to factors of 1.6–2 in relative
terms. This difference can again be attributed to the greater
flexibility of the individual optimization of the exponents.
For the other elements, the comparison is somewhat difficult
due to the different basis set sizes considered, but differences
in absolute terms of a few mhartrees are observed. The rela-
tive differences, on the other hand, tend to decrease to factors
ranging from 1.3 to 1.6. This decrease possibly arises from
the loss in variational freedom imposed by the “family-type”
constraints.

At last, in Table 4 the results from fully j–optimized sets
of Matsuoka and coworkers [9] are compared to similarly
sized basis sets from this work. It should be noted that the
comparison here is complicated by the fact that there is much
more variational freedom in Matsuoka’s sets than in those
presented here, due to the distinct basis sets for the j = l+1/2
and j = l − 1/2 functions for l > 0. This increased free-
dom will be more felt the heavier the elements get. In spite
of these differences, it can be seen that the results from this
work are in good agreement with Matsuoka’s, particularly
for the lighter elements, where the difference of spinor with
j = l + 1/2 and j = l − 1/2 is rather small. The differences
start to increase for the heavier elements, being the largest

for Xe. Up to the third row atoms, however, the differences
between Matsuoka’s results and those presented here are
roughly in line with those previously discussed, with �Em
values being larger than the j-optimized sets by factors of
1.3–1.5.

3.6 Comparison with polynomial expansions in legendre
polynomials

Petersson and coworkers [27] have recently discussed in de-
tail an alternative to polynomial expansions of ln ζ used
in this work. This alternative, in which monomials such as
{(i − 1)n} in Eq. 1 are replaced by Legendre polynomials of
the appropriate order, was shown to be more robust, particu-
larly when the terms in the expansion is increased. It is thus
of relevance to examine how the approach taken here fares
when compared to the expansion in Legendre polynomials.

The comparison is seen in Table 5 where values for �E
for the noble gases taken from the six-parameter expansion of
Petersson are shown beside values of �E for basis sets devel-
oped here, which approximately match those of the former.
It should be stressed that, as relativistic and non-relativistic
�E’s are being compared, discrepancies between results will
be due to the differences in the expansion of ln ζ as well as
due to the different basis set sizes required to achieve the
same accuracy in both cases.

A comparison of �E’s shows that, for light elements
(He, Ne, Ar), where the differences between the relativistic
and non-relativistic basis sets are small, the errors in the total
energies are quite similar for basis of approximately the same
size. The use of six optimizing parameters in Petersson’s for-
mula apparently does not bring about the same improvements
with respect to Eq. (1) as those seen when going from an even-
tempered set to Eq. (1) in non-relativistic calculations for the
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Table 4 Comparison of energy differences (�E) for the j-optimized sets of Matsuoka [9] and some similarly sized l-optimized basis sets from
this work; the �E are in mhartrees

Basis set (Ref. [9]) �Em (Ref. [9]) Basis set (this work) �Em (this work)

Li 12s 0.032 12s 0.045
Be 12s 0.057 12s 0.087
B 12s8p 0.098 12s7p 0.153
C 12s8p 0.159 12s7p 0.267
N 12s8p 0.245 12s7p 0.440
O 12s8p 0.362 12s7p 0.678
F 12s8p 0.517 12s7p 1.027
Ne 12s8p 0.718 12s7p 1.490

Na 16s8p 0.394 16s11p 0.281
Mg 16s8p 0.489 16s11p 0.345
Al 16s11p 0.448 16s11p 0.632
Si 16s11p 0.535 16s11p 0.746
P 16s11p 0.644 16s11p 0.841
S 16s11p 0.775 16s11p 0.963
Cl 16s11p 0.921 16s11p 1.120
Ar 16s11p 1.081 16s11p 1.327

K 20s11p 0.693 18s13p 1.034
Ca 20s11p 0.742 18s13p 1.176
Ga 20s15p9d 1.190 20s15p10d 1.700
Ge 20s15p9d 1.248 20s15p10d 1.766
As 20s15p9d 1.328 20s15p10d 1.872
Se 20s15p9d 1.425 20s15p10d 1.981
Br 20s15p9d 1.537 20s15p10d 2.123
Kr 20s15p9d 1.620 20s15p10d 2.279

Rb 22s15p9d 1.519 22s17p12d 1.559
Sr 22s15p9d 1.480 22s17p12d 1.537
In 22s18p12d 1.936 22s17p12d 6.917
Sn 22s18p12d 2.304 22s17p12d 7.203
Sb 22s18p12d 2.159 22s17p12d 7.201
Te 22s18p12d 2.265 22s17p12d 7.524
I 22s18p12d 2.367 22s17p12d 7.843
Xe 22s18p12d 2.456 22s17p12d 8.050

same elements [16]. Another important result is that the rate
of convergence of the SCF energy as the basis set is increased
is roughly the same for both approaches.

For heavier elements, there are larger discrepancies be-
tween the two approaches, with Petersson’s approach appar-
ently faring better, even though both are still quite close to
each other. It is not easy at this point to attribute this difference
to the better suitability of Petersson’s approach, particularly
due to the use of polynomials of higher order than those used
here, or to an artifact caused by the comparison of relativistic
and non-relativistic results. It would therefore be of interest
to investigate Petersson’s approach for heavier main-block
elements (Tl-Ra), but this is beyond the scope of this work.

4 Conclusions

In this paper we have presented a procedure suitable for gen-
erating sequences of basis sets which show systematic con-

vergence to the numerical total atomic energies, spinor en-
ergies and radial expectation values for the position opera-
tors (rn, n = −2, . . . , 4). It was found that the improvement
of these properties with increased basis set size
follows an exponential-like behavior, and that by grouping
sets with similar values for the error in the total atomic en-
ergy, �Em , it is possible to obtain a group of sets which show
approximately the same rate of convergence for all elements
considered.

Our results indicate that the use of simplex optimization
and expressions such as the four-parameter generator for-
mula of Eq. (1) is an alternative to fully optimizing expo-
nents for relativistic basis sets (particularly for medium and
large sets). This conclusion is supported by (i) the relative
ease with which relatively large sequences of basis sets can
be generated; and (ii) the fact that the errors on the total
energies so far have the same order of magnitude as those of
fully optimized sets similar in size, but developed employing
less constraints in the optimization procedure.
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Table 5 Values of �E (in mhartrees) for the non-relativistic basis sets of Petersson [27] and for selected basis sets developed here

Atom Basis �E Ref. [27] Basisa �Ea Basisb �Eb

He 5s 1.785 4s 6.526 6s 0.532
7s 0.166 6s 0.532 8s 0.057
9s 0.019 8s 0.057 10s 0.007
11s 0.003 10s 0.007 12s 0.001
13s 0.0004 12s 0.001 14s 0.0002

Ne 10s6p 6.173 10s5p 17.816 11s6p 4.715
12s8p 0.724 12s7p 1.491 13s8p 0.521
14s10p 0.113 14s9p 0.020 15s10p 0.083
16s12p 0.020 16s11p 0.036 17s12p 0.016
18s14p 0.004 18s13p 0.008 19s14p 0.004

Ar 16s10p 21.187 15s10p 57.517 16s11p 19.732
18s12p 2.975 17s12p 7.462 18s13p 3.039
20s14p 0.530 19s14p 1.328 20s15p 0.588
22s16p 0.100 21s16p 0.273 22s17p 0.121
24s18p 0.023 23s18p 0.058 24s19p 0.029

Kr 15s11p6d 39.728 16s11p6d 57.341 — —
18s13p8d 4.431 18s13p8d 10.293 — —
21s15p10d 0.589 20s15p10d 2.279 21s16p11d 1.076
24s17p12d 0.092 22s17p12d 0.523 24s19p14d 0.127
27s19p14d 0.015 24s19p14d 0.127 27s22p17d 0.016

Xe 18s13p8d 59.517 18s13p8d 156.061 — —
21s15p10d 7.317 20s15p10d 32.151 21s16p11d 16.991
24s17p12d 1.111 22s17p12d 8.051 24s19p14d 2.721
27s19p14d 0.178 24s19p14d 2.721 27s22p17d 0.252
30s23p18d 0.037 26s21p16d 0.530 30s25p20d 0.029

aSmaller than or equal to those presented in [27]
bLarger than those presented in [27]

Due to the different basis set sizes which make up these
sequences, their relative closeness to the results of fully opti-
mized basis sets, as well as to the systematic patters observed
for the properties above, it is expected that these can be
applied, when supplemented with suitable polarization func-
tions, from routine to highly accurate calculations in molec-
ular systems.

However, if additional economy in the number of primi-
tives is required while maintaining a given degree of accuracy
in the total energies, as could be the case for the smaller and
intermediately sized basis sets, the sequences developed here
could quite possibly be used as the starting point in devel-
oping sequences of fully optimized sets at a substantially
lower computational cost than starting from scratch, as these
exponents should be reasonably close to the fully optimized
ones.
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